Programming in
Martin-Lof’s Type Theory

An Introduction

BENGT NORDSTROM, KENT PETERSSON

and

JAN M. SMITH

Department of Computer Science
University of Goteborg/Chalmers,
S$-41296 Gateborg

CLARENDON PRESS - OXFORD
1990

3

Expressions and definitional equality

This chapter describes a theory of expressions, abbreviations and definitional
equality. The theory was developed by Per Martin-L5f and first presented by
him at the Brouwer symposium in Holland, 1981; a further developed version
of the theory was presented in Siena 1983.

The theory is not limited to type theoretic expressions but is a general
theory of expressions in mathematics and computer science. We shall start
with an informal introduction of the four different expression forming oper-
ations in the theory, then informally introduce arities and conclude with a
more formal treatment of the subject.

3.1 Application

In order to see what notions are needed when building up expressions, let us
start by analyzing the mathematical expression '

y+siny

We can view this expression as being obtained by applying the binary addition
operator + on y and sin(y), where the expression sin(y) has been obtained
by applying the unary function sin on y.
If we use the notation
e(€r,.-. €n)
for applying the expression e on e,...,€,, the expression above should be
written

+(y,sin(y))

and we can picture it as a syntax tree:

15 Expressions and definitional equality Ch. 3

+

/\

y sin

y

Figure 3.1: Syntax tree for the expression +(y,sin(y))

Similarly, the expression (from ALGOL 68)
vhile x>0 do x:=x-1; f(x) od
is analyzed as

vhile(>(x,0),

i (i=(x,
-(x,1)
),
call(f,x)
)

)

The standard analysis of expressions in Computing Science is to use syn-
tax trees, i.e. to consider expressions being built up from n-ary constants
using application. A problem with that approach is the treatment of bound
variables.

3.2 Abstraction

In the expression
T
/1 (y + sin(y))dy
the variable y serves only as a placeholder; we could equally well write

/l:(u+sin(u))du or Az(z+sin(z))dz

I'he only purpose of the parts dy, du and dz, respectively, is to show what
variable is used as the placcholder. If we let O denote a place, we could write

/Ix(n +sin(Q))

Sec. 3.3 Combination 1y

for the expression formed by applying the ternary integration operator [on
the integrand O + sin(0) and the integration limits 1 and z. The integrand
has been obtained by functional abstraction of y from y + sin(y). We will use
the notation

(z)e

for the expression obtained by functional abstraction of the variable z in e,
i.e. the expression obtained from e by looking at all free occurrences of the
variable z in e as holes. So, the integral should be written

[Hysin@)). 1,2)

Since we have introduced syntactical operations for both application and
abstraction it is possible to express an object by different syntactical forms.
An object which syntactically could be expressed by the expression

4

could equally well be expressed by

((z)e)()

When two expressions are syntactical synonyms, we say that they are defini-
tionally, or intensionally, equal, and we will use the symbol = for definitional
(intensional) equality between expressions. The definitional equality between
the expressions above is therefore written:

e = ((z)e)()

Note that definitional equality is a syntactical notion and that it has nothing
to do with the meaning of the syntactical entities.

We conclude with a few other examples of how to analyze common ex-
pressions using application and abstraction:

= (L, (/1 5ar(i))

Ingh

1
-

(VzeN)(z 20) = V(N,((z) 2(=,0))

Jor(1,n,((:)5)))

forifromltondo S

3.3 Combination

We have already scen examples of applications where the operator has been
applied to more than one expression, for example in the expression +(y, sin(y)).

0 Expressions and definitional equality Ch. 3

here are several possibilities to syntactically analyze this situation. It is pos-
ible to understand the application operation in such a way that an operator
n an application may be applied to any number of arguments. Another way
s to see such an application just as a notational shorthand for a repeated use
f a binary application operation, that is e(e;,...,e,) is just a shorthand for
...((e(e1)).--(en)). A third way, and this is the way we shall follow, is to
.ee the combination of expressions as a separate syntactical operation just as
wpplication and abstraction. So if e, ¢; ... and e, are expressions, we may
orm the expression
€1,€2y...,€n

vhich we call the combination of ¢;, €3, ... and e,.

Besides its obvious use in connection with functions of several arguments,
he combination operation is also used for forming combincd objects such as
rderings

AL

Y —

vhere A is a set and < is a reflexive, antisymmetric and transitive relation
n A, and finite state machines,

S,50, 5,6
vhere S is a finite set of states, sg € S is an initial state, £ an alphabet and
3 a transition/output function.
3.4 Selection

Jiven an expression, which is a combination, we can use the syntactical op-
sration selection to retrieve its components. If € is a combination with n

-omponents, then
(e).i
s an expression that denotes the ’th component of e if 1 <i < n. We have
he defining equation
(e1,..-,€n)d = &

vhere 1 €1 < n.

3.5 Combinations with named components

Che components of the combinations we have introduced so far have been
letermined by their position in the combination. In many situations it is
nuch more convenient to use names to distinguish the components. We will
hercfore also introduce a variant where we form a combination not only of
xpressions but also of names that will identify the components. If ¢, e, ..

Sec. 3.6 Arities 21

and e, are expressions and i1, iz ... and i,, (n > 1), are different names, then
we can form the expression

1t €,32:€2,...,2 €,

which we call a combination with named components.

To retrieve a component from a combination with named components, the
name of the component, of course, is used instead of the position number. So
if e is a combination with names i,, ..., i,, then

(€)-1;

(where i; is one of 1;,...,1,) is an expression that denotes the component
with name ;.

We will not need combinations with named components in this monograph
and will not explore them further.

3.6 Arities

From the examples above, it seems perhaps natural to let expressions in gen-
eral be built up from variables and primitive constants by means of abstrac-
tion, application, combination and selection without any restrictions. This is
also the analysis, leaving out combinations, made by Church and Curry and
their followers in combinatory logic.

However, there are unnatural consequences of this way of defining expres-
sions. One is that you may apply, e.g., the expression succ, representing the
successor function, on a combination with arbitrarily many components and
form expressions like suce(z,, z3, z3), although the successor function only has
one argument. You may also select a component from an expression which is
not a combination, or select the m’th component (m > n) from a combina-
tion with only n components. Another consequence is that self-application is
allowed; you may form expressions like succ(succ). Self-application, together
with the defining equation for abstraction:

((z)d)(e) = dlz:=¢]

where d[z := €] denotes the result of substituting e for all frec occurrences of
z in d, leads to expressions in which definitions cannot be eliminated. This
is scen by the well-known example

(@(N((D)z(=)) = ((2)=(2)((=)2(2)) = ...

From Church [21] we also know that if expressions and definitional equality
arc analyzed in this way, it will not be decidable whether two expressions arce
dcfinitionally equal or not. This will have effect on the usage of a formal

22 Expressions and definitional equality Ch. 3

system of proof rules since it must be mechanically decidable if a proof rule
is properly applied. For instance, in Modus Ponens

ADB A
B

it would be infeasible to require anything but that the implicand of the first
premise is definitionally equal to the second premise. Therefore, definitional
equality must be decidable and definitions should be eliminable. The anal-
ysis given in combinatory logic of these concepts is thus not acceptable for
our purposes. Per Martin-Lof has suggested, by going back to Frege [39],
that with each expression there should be associated an arity, showing the
“functionality” of the expression. Instead of just having one syntactical cate-
gory of expressions, as in combinatory logic, the expressions are divided into
different categories according to which syntactical operations are applicable.
The arities are similar to the types in typed A-calculus, at least from a formal
point of view.

An expression is either combined, in which case it is possible to select
components from it, or it is single. Another division is between unsafurated
expressions, which can be operators in applications, and safurated expres-
sions, which cannot. The expressions which are both single and saturated
have arity 0, and neither application nor selection can be performed on such
expressions. The unsaturated expressions have arities of the form (a—»f),
where o and § are arities; such expressions may be applied to expressions
of arity a and the application gets arity 8. For instance, the expression sin
has arity (0—+0) and may be applied to a variable z of arity 0 to form the
expression sin(z) of arity 0. The combined expressions have arities of the
form (a;®...®ay,), and from expressions of this arity, one may select the i'th
component if 1 < ¢ < n. The selected component is, of course, of arity a;.
For instance, an ordering A, < has arity (08((0€0)~»0)).

So we make the definition:

Definition 1 The arities are inductively defined as follows

1. 0 is an arily; the arity of single, salurated expressions.
2. Ifey,...,an (n 2 2) are arities, then (®---®ay,) is an arity; the
arity of a combined expression.

3. If @ and f are arities, then (a—»B) is an arity; the arity of unsaturated
ezpressions.

The inductive clauses generate different arities; two arities are equal only if
they are syntactically identical. The arities will often be written without
parentheses; in case of conflict, like in

0—020

Sec. 3.7 Definitions 23

—» will have lower priority than . The arity above should thercfore be
understood as

(0—(020))
We always assume that cvery variable and every primitive (predefined) con-

stant has a unique arity associated with it.
The arities of some of the variables and constants we have used above are:

Expression | Arity

i 0

T 0

1 0

sin 0—0

succ 0—+0

+ 030—0

I ((0—»0)e000)—0

From the rules of forming expressions of a certain arity, which we will give,
il is easy to derive the arities

Expression Arnity
sin(y) 0
+(y,sin(y)) 0
(v) +(y,sin(y)) 0—»0
J((¥) + (y,sin(y)), 1,3) | O
suce(z) 0

However, neither succ(succ) nor succ(z)(z) can be formed, since succ can or.ﬂy
be applied to expressions of arity 0 and succ(z) is a complete expression which
can not be applied to any expression whatscever.

3.7 Definitions

We allow abbreviatory definitions (macros) of the form
c = ¢

where ¢ is a unique identifier and ¢ is an expression without free variables.
We will often write

c(T1,22,...42Z0) = €
instead of
c = (21,%2,...,ZIn)e

In a definition, the left hand side is called definiendum and the right hand
side definiens.

24

Expressions and definitional equality Ch. 3

3.8 Definition of what an expression of a certain arity

In

1S

the rest of this chapter, we will explain how expressions are built up from

variables and primitive constants, each with an arity, and explain when two
expressions are (definitionally, intensionally) equal.

1. Variables. If z is a variable of arity a, then
z

is an expression of arity a.

2. Primitive constants. If ¢ is a primitive constant of arity «, then

c

is an expression of arity a.

3. Defined constants. If, in an abbreviatory definition, the definiens is an

expression of arity a, then so is the definiendum.

4. Application. If d is an expression of arity a—»8 and a is an expression

of arity a, then
d(a)

is an expression of arity 3.

5. Abstraction. If b is an expression of arity A and z a variable of arity a,

then
((=)b)

is an expression of arity a—»f. In cases where no ambiguities can occur,
we will remove the outermost parenthesis.

6. Combination. If a, is an expression of arity o, a; is an expression of

arity ag, ... and g, is an expression of arity ap, 2 < n, then
a),a3,...,0an

is an expression of arity a;8a,8 - - - ®a,,.

7. Selection. If a is an expression of arity ;@ - - ®a, and 1 <i<n, then

(a).i

is an expression of arity a;.

Sec. 3.9 Definition of equality between two expressions 25

3.9

Definition of equality between two expressions

We will use the notation a : a for a is an expression of arity c and a=b: a
for a and b are cqual expressions of arity a.

1.

Variables. If z is a variable of arity a, then
I=r:a
Constants. If c is a constant of arity a, then
c=c:a
Definiendum = Definiens. If a is a definiendum with definiens b of arity

a, then
a=b:a

. Application 1. fa=d :a—+fand b=V : a, then

a(b)=d'(¥): 8

. Application 2. (B-rule). If z is a variable of arity o, a an expression of

arity a and b an expression of arity 8, then
((z)b)(a) = b[z :=4q]: B

provided that no free variables in a becomes bound in b[z := a).

. Abstraction 1. (£-rule). If z is a variable of arity a and b= ¥ : 8, then

(z)b= (z)b' : a—p

. Abstraction 2. (a-rule). If z and y are variables of arity a and b : 3,

then
(z)b= (y)(blz :=y]) : B

provided that y does not occur free in b.

. Abstraction 3. (ny-rule). If z is a variable of arity a and b is an expression

of arity a—» g, then

(2)(Hz))=b:a—p

provided that z does not occur free in b.

.. — . =a -
. Combination 1. Ifay =a} : o, 62 = a3: a3, ... and @, = d,, : ay,, then

! ',
a),a3,...,a, = G,03,-..,0, : 0809 - -@ax,

26 Expressions and definitional equality Ch. 3

10. Combination 2. If e : ;®---®a,, then

(e).1,(e).2,...,(e)n=e:x1®:--@a,
11. Selection 1. fa=a':®---@a, and 1 <i < n, then
(a)i=(a').i:
12. Selection 2. If @, : ay,...,a, : a, and 1 < i < n then

(a1,...an)i=q;: o

13. Reflezivity. Ifa:a,thena=a:a.
14. Symmetry. fa=b:a,thenb=a: a.
15. Transitivity. fa=b:aand b=c:a,thena=c:a.

From a formal point of view, this is similar to typed A-calculus. The proof
of the decidability of equality in typed A-calculus can be modified to yield a
proof of decidability of =. It is also possible to define a normal form such
that an expression on normal form does not contain any subexpressions of
the forms ((z)b)(a) and (ay,...,a,).i. It is then possible to prove that every
expression is definitionally equal to an expression on normal form. Such a
normalization theorem, leaving out combinations, is proved in Bjerner (14]).

A note on the concrete syntaz used in this book

When we are writing expressions in type theory we are not going to restrict
ourselves to prefix constants but will use a more liberal syntax. We will
freely use parentheses for grouping and will in general introduce new syntax
by explicit definitions, like

(NMze A)B(z) = II(A,B)

If z is a variable of arity &;®..-®a, we will often use a form of pattern
matching and write
(xl,...,x,.)e

instead of (x)e and, correspondingly, write z; instead of z.i for occurrences
of x.1 in the expression e.

Part I

Polymorphic sets

